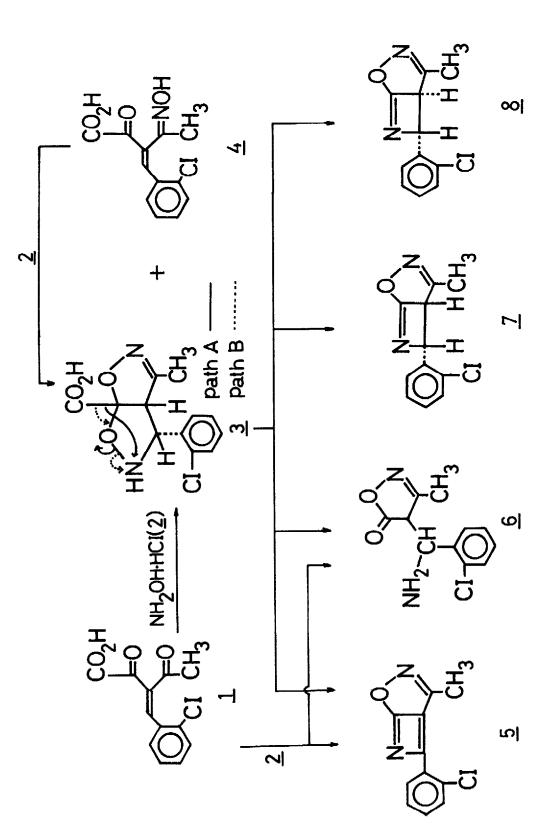
A ONE-STEP SYNTHESIS OF AZETO[3,2-d]ISOXAZOLINE

Takushi Kurihara and Masanobu Mori

Osaka College of Pharmacy, 2-10-65, Kawai, Matsubara, Osaka, 580, Japan

(Received in Japan 23 March 1976; received in UK for publication 12 April 1976)


It has been known that the acylpyruvic acid esters react with hydroxylamine to give the isoxazoles¹⁾ or β -aminocrotonic acid esters to give pyridin-3,5dicarboxylic acid esters²⁾. On the continuation of our works upon the reactivity of α,β -unsaturated β -diketones³⁾, we have recently reported the synthesis of 3-benzylideneacylpyruvic acids such as $\underline{1}^{4)}$. In the present communication, we wish to report a novel one-step synthesis and the formation mechanism of the azeto[3,2-d]isoxazoline(5), which have hitherto been unknown, by the reaction of 1 with hydroxylamine hydrochloride(2).

Refluxing an acetic acid solution of $\underline{1}$ with two equivalents amount of $\underline{2}$, followed by chromatographic separation, afforded 3-methyl-4-(o-chlorophenyl)azeto[3,2-d]isoxazoline($\underline{5}$) in 43% yield and 3-methyl-4-(α -amino-o-chlorophenyl)-5-isoxazolone($\underline{6}$) in 5% yield. The structural assignments to them were accomplished by the following data :

Compound <u>5</u>: colorless needles; mp 70-71° (from ligroin); IR $v \max_{max}^{KBr} 2250$ (vs)⁵⁾, 1620(s) and 1600(s) cm⁻¹; UV $\lambda \max_{max}^{EtOH} 262 \text{ nm}(\log \epsilon 4.01)$; NMR(CDCl₃) δ 2.52(3H, s, C₃-CH₃) and 7.40-7.70(4H, m, aromatic protons); mass spectrum m/e 218(M⁺). Anal. Calcd. for C₁₁H₇N₂OCl : C, 60.42; H, 3.22; N, 12.81. Found : C, 60.58; H, 3.00; N, 12.79.

Compound <u>6</u>: colorless prisms; mp 259-260°(from methanol)⁶; IR \lor ^{KBr} max 3400, 1690 and 1625 cm⁻¹; NMR(DMSO-d₆) δ 1.92(3H, s, C₃-CH₃), 3.95(1H, d, J=8 Hz, C₄-H), 5.95(1H, d, J=8 Hz, PhCH).

1825

To clarify the formation mechanism of <u>5</u>, the following reactions were carried out. When a solution of <u>1</u> with <u>2</u>(two equivalents) in acetic acid was heated at 50° for 24 hr, 3-methyl-4-(o-chlorophenyl)isoxazolidino[4,5-d]isoxazolin-6a-carboxylic acid(<u>3</u>) was obtained in 57% yield as colorless needles[mp 168-169°(from methanol); IR $\vee _{max}^{KBr}$ 1700 cm⁻¹; NMR(DMSO-d₆) δ 1.85(3H, s, C₃-CH₃), 4.77(1H, d, J=10 Hz, C_{3a}-H), 5.95(1H, d, J=10 Hz, C₄-H), and 12.80(1H, bs, NH)], together with 3-(o-chlorophenyl)-4-hydroxyiminoacetylpyruvic acid(<u>4</u>) in 7% yield[mp 147-149°(from methanol); IR $\vee _{max}^{KBr}$ 3380, 1758, and 1680 cm⁻¹; NMR (DMSO-d₆) δ 2.20(3H, s, CH₃), 6.48(1H, s, vinyl proton), and 11.45(1H, s, OH)]. Treatment of <u>4</u> with <u>2</u> in acetic acid at 50° gave <u>3</u> in 72% yield. Quilico⁷ reported the syntheses of 3,4-disubstituted isoxazolo[4,5-d]isoxazoles, but no their tetrahydro derivatives such as <u>3</u> were found in literature.

On the other hand, reaction of $\underline{1}$ with $\underline{2}$ (two equivalents) in acetic acid at 80° for 24 hr, followed by chromatographic separation and fractional recrystallization, yielded the following four compounds⁸⁾:

Compound 5 (3.5%).

Compound 6 (5%).

3-Methyl-4-(*o*-chlorophenyl)-*c s*-azetino[3,2-d]isoxazoline($\frac{7}{2}$)⁹⁾(10%)[colorless needles; mp 56-57°(from petr. ether); IR $\vee \frac{\text{KBr}}{\text{max}}$ 2270(m) cm⁻¹; NMR(CDCl₃) δ 2.15(3H, s, C₃-CH₃), 3.95(1H, d, J=6 Hz, C_{3a}-H), 6.10(1H, d, J=6 Hz, C₄-H); mass spectrum m/e 220(M⁺, 20), 80(100).

 $\begin{array}{l} 3-{\rm Methyl-4-(\it o-chlorophenyl)-\it trans-azetino[3,2-d]isoxazoline(\underline{8})\,(16\%)\,[}\\ {\rm colorless\ needles;\ mp\ 112-114^{\circ}(from\ ligroin);\ IR\ \cup\ {}_{{\rm max}}^{{\rm KBr}\ 2290\,({\rm m})\ {\rm cm}^{-1};\ {\rm NMR}\,({\rm CDC1}_3)\ \delta\ 2.20\,(3{\rm H},\ {\rm s,\ C}_3-{\rm CH}_3)\,,\ 4.60\,(1{\rm H},\ {\rm d,\ J=12\ Hz},\ {\rm C}_{3a}-{\rm H}\,)\,,\ 6.05\,(1{\rm H},\ {\rm d,\ J=12\ Hz},\ {\rm C}_{4}-{\rm H}\,);\ {\rm mass\ spectrum\ m/e\ 220\,({\rm M}^+,\ 16)\,,\ 80\,(100)\,.} \end{array}$

The reason of the low field shift(0.05 ppm) of C_{3a} -proton of <u>8</u> compared to that of <u>7</u> will be reasonably explained by the consideration of the anisotropy effect of phenyl ring located at *cis* position.

Similarly, heating of 3 in acetic acid at 80° gave azeto[3,2-d]isoxazoline (5), isoxazolone(6), and azetino[3,2-d]isoxazolines(7 and 8), which were identified with authentic samples in terms of their IR spectra, respectively. Moreover 7 and 8 were derived to 5 by refluxing in acetic acid easily. However attempted

No. 21

cyclization of $\underline{6}$ under these condition, as well as addition of hydrochloric acid, left <u>6</u> unchanged.

Consequently, these results clearly demonstrate that the reaction course of 5 is $1 \rightarrow 4 \rightarrow 3 \rightarrow 7$ or $8 \rightarrow 5$ via path A and the course of 6 is $1 \rightarrow 4 \rightarrow 3 \rightarrow 6$ via path B.

Finally it is interesting to note that thermolysis of $\underline{3}$ gave the same results giving the compounds $\underline{5}$, $\underline{6}$, $\underline{7}$, and $\underline{8}$.

References and Notes

- 1. For a review, see Roderick A. Barnes, "Heterocyclic Compounds", R.C. Elderfield, Ed., John Wiley and Sons, Inc., New York, N.Y. 1975, Vol. <u>5</u>, p 452; Y. Minami and Y. Suzuki, <u>J. Pharm. Soc. Japan</u>, <u>95</u>, 815(1975).
- Yee-Sheng Kao and Sir R. Robinson, <u>J. Chem. Soc</u>., 2865(1955); S. Yurugi,
 T. Fushimi, H. Sugiura, and M. Hieda, J. Pharm. Soc. Japan, 92, 1333(1972).
- 3. T. Kurihara, E. Araya, and T. Sakaguchi, <u>Heterocycles</u>, <u>3</u>, 543(1975);
 T. Kurihara, T. Sakaguchi, and H. Hirano, ibid., 3, 633(1975).
- 4. T. Kurihara and M. Mori, Chem. Pharm. Bull. (Tokyo), submitted.
- The following abreviations for IR are used : vs = very strong, s = strong, and m = medium.
- 6. All new compounds gave satisfactory elemental data.
- 7. A. Quilico, G. Gaudiani, and L. Merlini, Gazz. Chim. ital., 89, 571(1959).
- 8. No attempts have been undertaken to optimize these yields.
- 9. The designation of cis and trans refers to the relationship of hydrogens at C_{3a} and C_4 positions.